Mining Frequent Trajectories of Moving Objects for Location Prediction
نویسنده
چکیده
Advances in wireless and mobile technology flood us with amounts of moving object data that preclude all means of manual data processing. The volume of data gathered from position sensors of mobile phones, PDAs, or vehicles, defies human ability to analyze the stream of input data. On the other hand, vast amounts of gathered data hide interesting and valuable knowledge patterns describing the behavior of moving objects. Thus, new algorithms for mining moving object data are required to unearth this knowledge. An important function of the mobile objects management system is the prediction of the unknown location of an object. In this paper we introduce a data mining approach to the problem of predicting the location of a moving object. We mine the database of moving object locations to discover frequent trajectories and movement rules. Then, we match the trajectory of a moving object with the database of movement rules to build a probabilistic model of object location. Experimental evaluation of the proposal reveals prediction accuracy close to 80%. Our original contribution includes the elaboration on the location prediction model, the design of an efficient mining algorithm, introduction of movement rule matching strategies, and a thorough experimental evaluation of the proposed model.
منابع مشابه
Mining moving objects trajectories in Location-based services for spatio-temporal database update
Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-featur...
متن کاملA Frequent Pattern based Prediction Model for Moving Objects
ion Huge amounts of moving object data have been collected with the advances in wireless communication and positioning technologies. Trajectory patterns extracted from historical trajectories of moving objects can reveal important knowledge about movement behavior for high quality LBS services, especially for location prediction. Existing approaches cannot forecast accurate locations in the dis...
متن کاملMining Long, Sharable Patterns in Trajectories of Moving Objects
The efficient analysis of spatio–temporal data, generated by moving objects, is an essential requirement for intelligent location–based services. Spatiotemporal rules can be found by constructing spatio–temporal baskets, from which traditional association rule mining methods can discover spatio–temporal rules. When the items in the baskets are spatio–temporal identifiers and are derived from tr...
متن کاملMining Trajectory Patterns by Incorporating Temporal Properties
Spatio-temporal patterns extracted from historical trajectories of moving objects unveil important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of regional symbols and discover frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations in the original dat...
متن کاملMining Spatio-Temporal Patterns in Trajectory Data
Spatio-temporal patterns extracted from historical trajectories of moving objects reveal important knowledge about movement behavior for high quality LBS services. Existing approaches transform trajectories into sequences of location symbols and derive frequent subsequences by applying conventional sequential pattern mining algorithms. However, spatio-temporal correlations may be lost due to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007